

GTA | Guião de Trabalho Autónomo n.º 7 FÍSICA E QUÍMICA A 11.º ANO

Tema 1: Mecânica Subtema 2: Interações e seus efeitos

PORQUÊ APRENDER SOBRE...?

Interações e seus efeitos

Aprender a Lei da Gravitação Universal é importante, porque nos ensina a resolver problemas práticos sobre como os objetos se atraem no universo. Compreender esta lei mostra-nos como grandes descobertas científicas transformaram a nossa visão do mundo ao longo da história. Ao aplicá-la, desenvolvemos a nossa capacidade de pensar logicamente e explicar as nossas conclusões com base em factos observáveis. Esta aprendizagem ajuda-nos a ligar a teoria com situações reais, desde a queda de objetos até ao movimento dos planetas.

O QUE VOU APRENDER?

- Associar o conceito de força a uma interação entre dois corpos e identificar as quatro interações fundamentais na Natureza, associando-as às ordens de grandeza dos respetivos alcances e intensidades relativas.
- Analisar a ação de forças, prevendo os seus efeitos sobre a velocidade em movimentos curvilíneos e retilíneos (acelerados e retardados), relacionando esses efeitos com a aceleração.
- Aplicar, na resolução de problemas, as Leis de Newton e a Lei da Gravitação Universal, enquadrando as descobertas científicas no contexto histórico e social, explicando as estratégias de resolução e os raciocínios demonstrativos que fundamentam uma conclusão.
- Determinar, experimentalmente, a aceleração da gravidade num movimento de queda livre, investigando se depende da massa dos corpos, avaliando procedimentos e comunicando os resultados.

COMO VOU APRENDER?

GTA 6: As quatro interações da natureza

GTA 7: Interação gravítica e Lei da Gravitação Universal

GTA 8: Terceira Lei de Newton

GTA 9: Efeito das forças sobre a velocidade

GTA 10: Segunda Lei de Newton

GTA 11: Primeira Lei de Newton

GTA 12: Aceleração da gravidade

Tema 1: Mecânica

Subtema 2: Interações e seus efeitos

GTA 7: Interação gravítica e Lei da Gravitação Universal

Objetivos:

 Aplicar, na resolução de problemas, a Lei da Gravitação Universal, enquadrando as descobertas científicas no contexto histórico e social, explicando as estratégias de resolução e os raciocínios demonstrativos que fundamentam uma conclusão.

Recursos e materiais: manual de Física, caderno diário, calculadora e *internet*.

TAREFA 1: Explorar a gravidade

Assiste ao vídeo "How far would you have to go to escape gravity?". **Coloca** as legendas em português.

How far would you have to go to escape gravity? - Rene Laufer

O vídeo explica que a gravidade é a força de atração entre quaisquer dois objetos com massa no universo, sendo determinada pela equação de Newton (F = $G \cdot m_1 \cdot m_2/r^2$). A intensidade da força gravitacional varia conforme a massa dos objetos e diminui com o quadrado da distância, mas nunca chega a zero, mesmo a grandes distâncias. Embora a gravidade da Terra diminua à medida que nos afastamos, estamos sempre sob influência gravitacional de todos os corpos celestes, desde *smartphones* próximos até galáxias distantes. Os astronautas na Estação Espacial Internacional sentem ausência de peso, não porque escaparam da gravidade terrestre, mas porque estão em queda livre constante. Curiosamente, o único lugar onde poderíamos "escapar" da gravidade terrestre seria no próprio centro da Terra, onde as forças se anulariam.

Reflete sobre as seguintes questões:

- De acordo com o vídeo, como é que a força gravitacional varia quando duplicamos a distância entre dois objetos?
- Qual é o nome do cientista histórico mencionado no vídeo?

TAREFA 2: Lei da Gravitação Universal

Pesquisa, no manual, informações sobre a Lei da Gravitação Universal.

Elabora, no caderno, um resumo sobre esta lei estabelecida no fim do século XVII pelo cientista Isaac Newton.

TAREFA 3: Aplica

Etapa 1: Exercícios resolvidos

Exercício 1: Calcula a força gravítica exercida pela Terra na maçã de 80 g quando esta se encontra na superfície da Terra.

Considera: $r_{\text{Terra}} = 6400 \text{ km}$; $m_{\text{Terra}} = 6.0 \text{ x} \cdot 10^{24} \text{ kg}$

Etapas na resolução de exercícios:

- 1. Indica os dados do problema.
- 2. Escreve a fórmula e substitui os valores.
- 3. Mostra os cálculos com justificação.

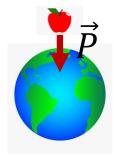


Figura 1 – Peso de uma maçã.

Dados fornecidos:

- Massa da maçã: m_1 = 80 g = 0,080 kg
- Massa da Terra: m_2 = 6,0 x 10²⁴ kg
- Raio da Terra: $r = 6400 \text{ km} = 6,400 \times 10^6 \text{ m}$
- Constante da gravitação universal: $G = 6,67 \times 10^{-11} \,\mathrm{N} \,\mathrm{m}^2 \,\mathrm{kg}^{-2}$

Fórmula da força gravítica:

$$F_{\rm g} = G \frac{m_1 m_2}{r^2}$$

Substituindo os valores:

$$F_{\rm g} = 6.67 \times 10^{-11} \frac{0.080 \times 6.0 \times 10^{24}}{(6.400 \times 10^6)^2}$$

$$\Leftrightarrow$$
 $F_{\rm g} = 7.82 \times 10^{-1} \, \rm N$

Resposta final:

A força gravítica exercida pela Terra na maçã é aproximadamente 7,82 $imes 10^{-1}$ N

Exercício 2:

Classifica a afirmação como verdadeira ou como falsa:

"A intensidade da interação gravítica entre dois corpos é diretamente proporcional ao produto das suas massas."

Repara:

A intensidade gravítica entre dois corpos é dada pela Lei da Gravitação Universal:

$$F_{\rm g} = G \frac{m_1 m_2}{r^2}$$

A força gravítica entre os corpos é diretamente proporcional ao produto da massa dos corpos, dependendo da massa dos dois corpos em interação e inversamente proporcional ao quadrado da distância que separa os corpos, ou seja, quanto maior for a distância entre os corpos menor será a intensidade da interação gravítica entre eles.

Resposta: verdadeira.

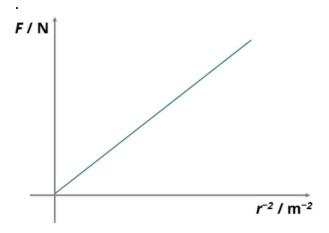
Etapa 2: Resolução de exercícios

Resolve os exercícios propostos do manual.

Compara as tuas respostas com as soluções e com as respostas dos teus colegas.

Regista dúvidas e revê os conceitos, se necessário.

Estuda com um colega.


TAREFA 4: Autoavalia

Exercício 1: Calcula a intensidade da força gravitacional entre a Terra e a Lua.

Considera:

- Massa da Lua: $m_{Lua} = 7.3 \times 10^{22} \text{ kg}$
- Massa da Terra: m_{Terra} = 6,0 x 10²⁴ kg
- Distância da Terra à Lua: $d_{Terra-Lua}$ = 3,8 x 10 5 km
- Constante da gravitação universal: $G = 6,67 \times 10^{-11} \,\mathrm{N} \;\mathrm{m}^2 \,\mathrm{kg}^{-2}$

Exercício 2: O gráfico seguinte traduz a Lei da Gravitação Universal.

Determina o declive da reta apresentada.

PROPOSTA DE RESOLUÇÃO

TAREFA 1:

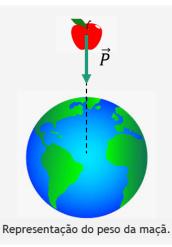
De acordo com o vídeo, como é que a força gravitacional varia quando duplicamos a distância entre dois objetos?

A força gravitacional diminui com o quadrado da distância. Isto significa que, se a distância entre dois objetos for duplicada, a força gravitacional entre eles fica quatro vezes menor (porque $2^2 = 4$).

Qual é o nome do cientista histórico mencionado no vídeo?

O vídeo menciona Isaac Newton, ao apresentar a sua lei da gravitação universal.

PROPOSTA DE RESOLUÇÃO


TAREFA 2:

Lei da Gravitação Universal

Dois corpos atraem-se exercendo, um sobre o outro, forças de igual intensidade. Cada uma dessas forças é:

- diretamente proporcional ao produto das massas dos corpos, m_1 e m_2 (supondo constante a distância, r, entre eles);
- $F_{\rm g} = G \frac{m_1 m_2}{r^2 \rm m}$ $N m^2 kg^{-2}$
- inversamente proporcional ao quadrado da distância entre os corpos, r^2 (supondo constantes as massas m_1 e m_2).

A constante G chama-se **constante da gravitação universal**. O seu valor é o mesmo em qualquer sítio do Universo: $G = 6,67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

A intensidade da força gravítica só é significativa quando a massa de pelo menos um dos corpos em interação é muito grande.

Chamamos **peso** à força exercida pela Terra sobre um corpo.

A força gravítica de Newton apenas explica os fenómenos astronómicos mais comuns.

A Teoria da Relatividade Geral, uma teoria sobre gravitação formulada por Einstein há cerca de cem anos, complementou as ideias de Newton. Ela explica o comportamento das estrelas de neutrões, dos buracos negros e os fenómenos na fase inicial do *big bang*. Estes fenómenos não são explicados pela Lei da Gravitação Universal de Newton.

PROPOSTA DE RESOLUÇÃO

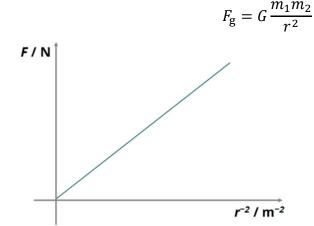
TAREFA 4:

Exercício 1: Calcula a intensidade da força gravitacional entre a Terra e a

Dados fornecidos:

- Massa da Terra: $m_{Terra} = 6.0 \times 10^{24} \text{ kg}$
- Massa da Lua: m_{Lua} = 7,3 x 10²² kg
- Distância da Terra à Lua: $d_{Terra-Lua}$ = 3,8 x 10 5 km = 3,8 x 10 8 m
- Constante da gravitação universal: $G = 6,67 \times 10^{-11} \,\mathrm{N} \,\mathrm{m}^2 \,\mathrm{kg}^{-2}$

Aplicando a Lei da Gravitação Universal:


$$F_{\text{Terra-Lua}} = 6.67 \times 10^{-11} \frac{6.0 \times 1024 \times 7.3 \times 1022}{(3.8 \times 108)^2}$$

$$\Leftrightarrow F_{\text{Terra-Lua}} = 2.0 \times 10^{20} \text{ N}$$

A intensidade da força gravitacional entre a Terra e a Lua é de 2,0 \times 10^{20} N.

Exercício 2: Determina o declive da reta apresentada.

A Lei da Gravitação Universal é traduzida pela expressão:

No gráfico apresenta-se como variável dependente a força gravítica $F_{\rm g}$ (eixo vertical) e como variável independente o inverso do quadrado da distância entre os corpos $\frac{1}{r^2}$ (eixo horizontal).

$$F_{\rm g} = G \times m_1 \times m_2 \times \frac{1}{r^2}$$

O QUE APRENDI?

Já sabes aplicar corretamente a fórmula da força gravítica?

És capaz de...

- aplicar, na resolução de problemas, a Lei da Gravitação Universal, enquadrando as descobertas científicas no contexto histórico e social, explicando as estratégias de resolução e os raciocínios demonstrativos que fundamentam uma conclusão?
- relacionar estes conceitos com aprendizagens anteriores?
- perceber quando precisas de ajuda e saber pedir orientação?

Sugestões:

Analisa as propostas de resolução dos exercícios. Se necessário, **repete** as tarefas.

Estuda com um ou mais colegas de turma, para reforçares as aprendizagens e, se possível, esclarece as tuas dúvidas.

Pratica, resolvendo os exercícios do teu manual escolar.

COMO POSSO COMPLEMENTAR A APRENDIZAGEM?

Assiste à videoaula <u>Força</u>. <u>Grandezas escalares e vetoriais</u>. <u>Unidades de força</u> e recorda o que aprendeste no 9.º ano.

Assiste à videoaula <u>Interação gravítica e Lei da Gravitação</u> <u>Universal</u> e resolve os exercícios propostos.

Explora o simulador:

Laboratório de Força Gravítica

