

GTA | Guião de Trabalho Autónomo n.º 7 FÍSICA E QUÍMICA A 10.º ANO

Tema 1: Elementos Químicos e a sua Organização Subtema 2: Energia dos eletrões nos átomos - espetros

PORQUÊ APRENDER SOBRE...?

Energia dos eletrões nos átomos - espetros

Estás preparado(a) para descobrir que cada elemento químico tem um espetro único, funcionando como uma verdadeira "impressão digital"?

Vem descobrir!

O QUE VOU APRENDER?

- Relacionar as energias dos fotões correspondentes às zonas mais comuns do espectro eletromagnético e essas energias com a frequência da luz.
- Interpretar os espectros de emissão do átomo de hidrogénio a partir da quantização da energia e da transição entre níveis eletrónicos e generalizar para qualquer átomo.
- Comparar os espectros de absorção e emissão de vários elementos químicos, concluindo que são característicos de cada elemento.
- Explicar, a partir de informação selecionada, algumas aplicações da espectroscopia atómica (por exemplo, identificação de elementos químicos nas estrelas, determinação de quantidades vestigiais em química forense).
- Identificar, experimentalmente, elementos químicos em amostras desconhecidas de vários sais, usando testes de chama, comunicando as conclusões.

COMO VOU APRENDER?

GTA 6: O que é o espetro eletromagnético?

GTA 7: O que revela o espetro do átomo de hidrogénio?

GTA 8: Como descobrir a composição das estrelas?

GTA 9: Como identificar elementos químicos com o teste da chama?

Tema 1: Elementos químicos e a sua organização

Subtema 2: Energia dos eletrões nos átomos

GTA 7: O que revela o espetro do átomo de hidrogénio?

Objetivo: Interpretar os espectros de emissão do átomo de hidrogénio a partir da quantização da energia e da transição entre níveis eletrónicos e generalizar para qualquer átomo.

Modalidade de trabalho: individual e/ou de grupo.

Recursos e materiais: manual de química, caderno diário, calculadora e *internet*.

TAREFA 1: Fogo de artifício

Sabias que o fogo de artifício surgiu antes da química ser uma ciência?

Registos de misturas incendiárias em celebrações asiáticas datam de cerca de 2000 a.C., e a pólvora, principal componente do fogo de artifício, foi descoberta acidentalmente no século IX por um alquimista chinês, ao combinar salitre, enxofre e carvão. (Adaptado de Fogo de Artifício - Revista de Ciência Elementar)

Já alguma vez te perguntaste o que dá origem às cores vibrantes do fogo de artifício?

A resposta está na química e no estudo do espetro de emissão dos átomos.

Visiona o vídeo "A Química do Fogo de Artifício" e descobre mais sobre a ciência por detrás do fogo de artifício!

A Química do Fogo de Artifício

O vídeo mostra como o fogo de artifício é uma expressão fascinante da química. Cada 'estrela' do fogo de artifício contém uma mistura cuidadosamente equilibrada de materiais: um combustível, um agente oxidante, compostos metálicos responsáveis pelas cores e um aglutinante que mantém tudo unido. Durante a explosão, o calor intenso excita os eletrões dos átomos (ou iões), que ao regressarem aos níveis de menor energia libertam energia sob a forma de radiação visível, luz colorida.

A cor da luz emitida varia consoante o metal utilizado:

- Vermelho: sais de estrôncio.
- Laranja: sais de cálcio, como o cloreto de cálcio.
- Amarelo: sais de sódio, como o cloreto de sódio (o sal das cozinhas).
- · Verde: cloreto de bário.
- Azul: cloreto de cobre.

A pirotecnia exige precisão para garantir estabilidade, temperaturas adequadas e cores bem definidas e intensas.

No átomo de hidrogénio, com apenas um eletrão, também ocorrem transições energéticas que resultam na emissão de luz. Vem descobrir o seu espetro de emissão!

TAREFA 2: Espetro do átomo de hidrogénio

Procura no teu manual informações sobre o "Espetro do átomo de hidrogénio".

Regista no teu caderno as informações necessárias para responderes às seguintes questões:

- O que acontece ao eletrão de um átomo de hidrogénio quando absorve energia?
- A que se devem as riscas do espetro do átomo de hidrogénio?

Repara no espetro de emissão do átomo de hidrogénio.

Como classificas este espetro?

Compara a tua resposta com as dos teus colegas.

As riscas do espetro do átomo de hidrogénio podem ser explicadas com base no **modelo atómico de Bohr**, pois estão relacionadas com a estrutura atómica dos átomos.

Relembra o Modelo atómico de Bohr:

- Às orbitas onde se encontram os eletrões correspondem quantidades de energia bem definidas, designadas por níveis de energia (n); quanto mais afastado do núcleo estiver o eletrão, maior será a sua energia.
- Os eletrões movem-se em órbitas circulares bem definidas em torno do núcleo.
- A transição dos eletrões entre os níveis de energia está associada à absorção (excitação) ou emissão (desexcitação) de quantidades de energia bem definidas.

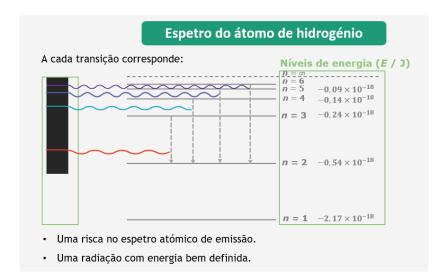
Copia para o teu caderno a informação anterior.

O que acontece ao eletrão de um átomo de hidrogénio quando absorve energia? **Procura** a resposta no teu manual.

Compara a tua resposta com a informação seguinte:

Energia do fotão

Quando os átomos de hidrogénio absorvem energia, os eletrões passam para estados de energia mais elevados, são excitados.


Mas os eletrões excitados têm tendência a regressar a níveis de energia mais baixos, são desexcitados. Neste processo, libertam a energia que absorveram.

Quando os átomos de hidrogénio absorvem energia de valores bem determinados, os eletrões passam para níveis de maior energia, ou seja, deslocam-se para órbitas mais afastadas do núcleo. Este processo é conhecido como **excitação**.

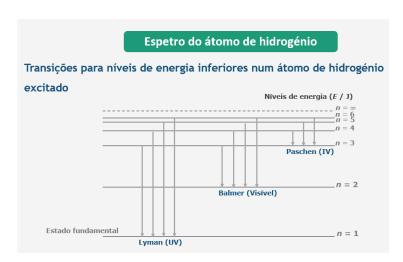
Observa a figura:

Repara que as riscas coloridas observadas no espetro de emissão correspondem à radiação emitida pelo átomo de hidrogénio na zona visível do espetro eletromagnético. Estas riscas resultam de transições eletrónicas entre níveis de energia, especificamente de $n \ge 3$ para n = 2.

- Quando o eletrão transita do nível n ≥ 3 para n = 2, emite um fotão de cor vermelha.
 - A energia desse fotão corresponde à diferença de energia entre os níveis n = 3 e n = 2.
- Já quando o eletrão transita do nível n = 4 para n = 2, emite um fotão de cor
 - O fotão azul tem maior energia do que o fotão vermelho, pois a diferença de energia entre os níveis n = 4 e n = 2 é maior do que entre n = 3 e n = 2.

A que se devem as riscas do espetro do átomo de hidrogénio?

As riscas do espetro do átomo de hidrogénio devem-se às **transições eletrónicas** que ocorrem quando o eletrão, após ter sido excitado para um nível de energia mais elevado, **liberta energia ao regressar a um nível de menor energia**.


Essa libertação de energia manifesta-se sob a forma de **luz**, cuja frequência é determinada pelos níveis de energia entre os quais ocorre a transição. Cada transição eletrónica origina uma radiação com uma frequência bem definida, resultando numa risca no espetro atómico de emissão.

TAREFA 3: Séries espetrais do átomo de hidrogénio

Será que os átomos de hidrogénio emitem apenas radiação visível?

Observa a figura,

Repara que os átomos de hidrogénio excitados também emitem luz invisível:

- Infravermelha (IV): Estas radiações resultam de transições menos energéticas, de níveis de energia n ≥ 4 para n = 3 (Série de Paschen e outras subsequentes).
- Ultravioleta, UV Estas radiações correspondem a transições mais energéticas, de níveis de energia n ≥ 2 para n = 1 (Série de Lyman).

Elabora no teu caderno uma tabela com as diferentes séries espetrais do átomo de hidrogénio. Para cada série, indica:

- Os níveis de energia envolvidos;
- A zona do espetro eletromagnético (UV, visível, IV).

Preenche a tabela com base no que observaste na figura anterior e as informações do teu manual.

Discute com os teus colegas as semelhanças e diferenças entre as tabelas que elaboraram.

Compara a tua tabela com a proposta que se segue.

A tabela apresenta as diferentes séries espetrais do átomo de hidrogénio.

Nome	Transição	Luz emitida
Série de Lyman	para <i>n</i> = 1	Ultravioleta
Série de Balmer	de $n \ge 3$ para $n = 2$	Visível
Série de Paschen	de $n \ge 4$ para $n = 3$	Infravermelha

Figura 5 – Imagem retirada da videoaula Espetro do átomo de hidrogénio

TAREFA 4: Analisa o seguinte exercício resolvido.

Exercício 1: A tabela seguinte apresenta os valores de energia dos níveis n = 1 e n = 2 do átomo de hidrogénio.

n	E_n / J
1	$-2,18 \times 10^{-18}$
2	$-5,45 \times 10^{-19}$

Seleciona a opção que completa corretamente a afirmação.

A transição do eletrão do átomo de hidrogénio do nível n=1 para o nível n=2 envolve a

- (A) absorção de $1,64 \times 10^{-18}$ J.
- **(B)** libertação de $1,64 \times 10^{-18}$ J.
- (C) absorção de 2.73×10^{-18} J.
- **(D)** libertação de $2,73 \times 10^{-18}$ J.

Adaptado de Exame Física e Química A, 2015, 2.ª Fase, Grupo II, Questões 3.1

Proposta de resolução:

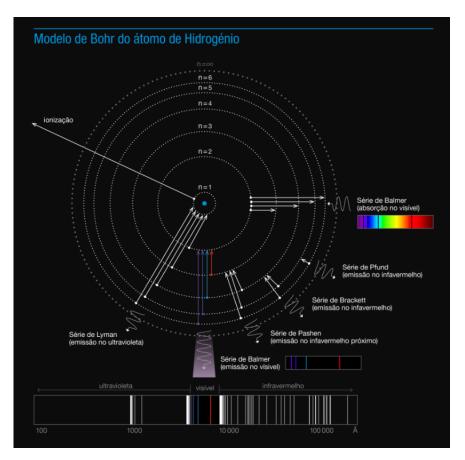
Como o eletrão transita para um nível de maior energia, terá de absorver energia numericamente igual à diferença entre as energias dos dois níveis envolvidos.

$$\Delta E = E_2 - E_1 = (-5.45 \times 10^{-19} \text{ J}) - (-2.18 \times 10^{-18} \text{ J}) <=>$$
 <=> $\Delta E = 1.64 \times 10^{-18} \text{ J}$ Resposta: Opção (A)

Agora é a tua vez, **resolve** o exercício no teu caderno e explica o raciocínio como na resolução acima.

TAREFA 5: Explora a Tabela Periódica dos Espetros

Consulta, a Tabela Periódica dos Espetros de Emissão.



Planetário do Porto

Representa, no teu caderno o Modelo de Bohr do átomo de hidrogénio e identifica:

- · as órbitas dos eletrões;
- as transições entre os níveis de energia que originam as linhas do espetro de emissão (como a série de Balmer).

Prepara uma breve apresentação para os teus colegas, explicando como essas transições dão origem às riscas do espetro de emissão do átomo de hidrogénio.

Fonte: Planetário do Porto.

TAREFA 6:

Autoavalia as tuas aprendizagens. Resolve o seguinte exercício.

Exercício: Seleciona a opção correta, tendo em conta as transições eletrónicas que podem ocorrer no átomo de hidrogénio.

- (A) As transições de níveis superiores para o nível 1 envolvem emissão de radiação visível.
- (B) As transições de níveis superiores para o nível 1 são as menos energéticas.
- **(C)** As transições de níveis superiores para o nível 3 envolvem emissão de radiação ultravioleta.
- **(D)** As transições de n > 2 para n = 2 originam riscas coloridas.

Visiona a videoaula "Espetro do átomo de hidrogénio" e **resolve** os exercícios propostos.

Espetro do átomo de hidrogénio

Compara os teus resultados com os do professor Rui.

Caso tenhas dúvidas, revê a videoaula.

PROPOSTA DE RESOLUÇÃO

TAREFA 2

Como classificas este espetro?

Os espetros atómicos são espetros descontínuos ou de riscas e podem ser de emissão ou de absorção.

Um espetro atómico de emissão, obtido durante a desexcitação eletrónica caracteriza-se por linhas coloridas sobre um fundo negro.

O espetro apresentado é um espetro de emissão descontínuo (ou de riscas).

TAREFA 6

Recorda a figura 4.

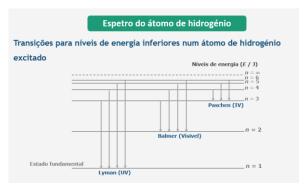


Figura 4 – Imagem retirada da videoaula Espetro do átomo de hidrogénio

A primeira série é composta por transições de níveis superiores para o nível fundamental (n=1), e a radiação emitida pertence à zona do ultravioleta do espetro eletromagnético.

A segunda série é composta por radiação visível (radiação menos energética) e corresponde a transições de n > 2 para n = 2.

A terceira série corresponde a radiação infravermelha emitida quando o eletrão transita para *n*=3 a partir de níveis de energia superiores.

Resposta: opção (D)

O QUE APRENDI?

Já sabes o que revela o espetro de emissão do átomo de hidrogénio?

És capaz de...

- compreender como o espetro de emissão do átomo de hidrogénio mostra a quantização da energia e as transições entre os níveis de energia dos eletrões?
- aplicar os conhecimentos sobre o espetro de emissão do átomo de hidrogénio a outros átomos?
- relacionar conceitos novos com conhecimentos já adquiridos?
- reconhecer quando precisas de ajuda e saber pedir orientação?

Sugestões:

Analisa as propostas de resolução dos exercícios. Se necessário, repete as tarefas.

Estuda com um ou mais colegas de turma para reforçares as aprendizagens e, se possível, esclarece as tuas dúvidas.

Procura, no teu manual escolar, os exercícios resolvidos sobre o tema "espetro do átomo de hidrogénio". Analisa-os e resolve-os sozinho. Por fim, compara a tua resolução com a do manual e com a dos teus colegas.

COMO POSSO COMPLEMENTAR A APRENDIZAGEM?

Consulta outros recursos educativos digitais.

Casa das Ciências - Espetros de Riscas

Fogo de artifício - Revista de Ciência Elementar

Explora os seguintes recursos.

Exame 2019, Grupo V, IAVE

Estrutura eletrónica dos átomos | Química | Ciências | Khan Academy