

GTA | Guião de Trabalho Autónomo n.º 5 FÍSICA E QUÍMICA A 11.º ANO

Tema 1: Mecânica Subtema 1: Tempo, posição, velocidade e aceleração

PORQUÊ APRENDER SOBRE...?

Tempo, posição, velocidade e aceleração.

Sabias que compreender um gráfico velocidade-tempo pode ajudar a explicar uma ultrapassagem num Grande Prémio? Em corridas como a Fórmula E, em que tudo acontece em segundos, perceber se o movimento é uniforme, acelerado ou retardado faz toda a diferença. Analisar estes gráficos permite-te descobrir quando e como um piloto acelera para vencer. Ao resolver problemas com aceleração, estás a aplicar estratégias semelhantes às usadas pelas equipas de engenharia.

O QUE VOU APRENDER?

- Analisar movimentos retilíneos reais, utilizando equipamento de recolha de dados sobre a posição de um corpo, associando a posição a um determinado referencial.
- Interpretar o carácter vetorial da velocidade e representar a velocidade em trajetórias retilíneas e curvilíneas.
- Interpretar gráficos posição-tempo e velocidade-tempo de movimentos retilíneos reais, classificando os movimentos em uniformes, acelerados ou retardados.
- Aplicar, na resolução de problemas, os conceitos de deslocamento, velocidade média, velocidade e aceleração, explicando as estratégias de resolução e avaliando os processos analíticos e gráficos utilizados.

COMO VOU APRENDER?

GTA 1: Movimento retilíneo e gráficos posição-tempo

GTA 2: Distância percorrida e deslocamento. Rapidez média e velocidade média

GTA 3: Velocidade. Gráficos posição-tempo

GTA 4: Gráficos velocidade-tempo

GTA 5: Aceleração

Tema 1: Mecânica

Subtema 1: Tempo, posição, velocidade e aceleração

GTA 5: Aceleração

Objetivos:

- Interpretar gráficos velocidade-tempo de movimentos retilíneos reais, classificando os movimentos em uniformes, acelerados ou retardados.
- Aplicar, na resolução de problemas, o conceito de aceleração, explicando as estratégias de resolução e avaliando os processos analíticos e gráficos utilizados.

Recursos e materiais: manual de Física, caderno diário, calculadora e *internet*.

TAREFA 1: A ultrapassagem de António Félix da Costa

Etapa 1:

Sabias que António Félix da Costa, piloto português de carros de Fórmula E, foi campeão desta modalidade no campeonato de 2019-2020?

Visualiza o vídeo "2021 Monaco E-Prix | Last lap pass from Da Costa on Evans, for the win!". **Coloca** as legendas em português.

Nesta prova, António Félix da Costa realizou uma ultrapassagem espetacular sobre Mitch Evans na última volta para vencer a corrida.

2021 Monaco E-Prix | Last lap pass from Da Costa on Evans, for the win!

• **Recorda** o que já sabes sobre aceleração para compreender como o piloto António Félix da Costa conseguiu ultrapassar na última volta?

Etapa 2:

Para conheceres as principais diferenças entre os carros de Fórmula 1 e os carros de Fórmula E, **explora** os recurso:

Aceleração média

TAREFA 2: Pesquisa no manual

Pesquisa informações no teu manual e faz um pequeno resumo sobre os seguintes conceitos:

- Aceleração média
- Aceleração

Elabora, no teu caderno, uma tabela que apresente a relação que existe entre a aceleração, \vec{a} , e a velocidade, \vec{v} , num certo instante, nos movimentos retilíneos acelerados e retardados, permitindo caracterizar esses movimentos.

TAREFA 3: Aplica

Etapa 1: Análise de Exercícios resolvidos

Exercício 1: Imagina que o carro do António Félix da Costa aumentou a sua velocidade de 108 km/h para 130 km/h em 2,5 s. **Calcula** a aceleração média e **interpreta** o seu valor.

Repara:

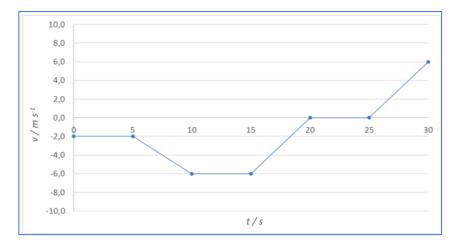
- Dados do problema Velocidade inicial: v_i =108 km/h Velocidade final: v_f =130 km/h Tempo: Δt =2,5 s
- Conversão: de km/h para m/s $108 \text{ km/h} = \frac{108 \times 1000}{3600} = 30,0 \text{ m/s}$ $130 \text{ km/h} = \frac{130 \times 1000}{3600} \approx 36,1 \text{ m/s}$

Repara:

$$m/s = m s^{-1}$$

.
 $m/s^2 = m s^{-2}$

• Calcular a aceleração média, aplicando a fórmula da aceleração média:


$$a_{\rm m} = \frac{\Delta v}{\Delta t} = \frac{v_{\rm f} - v_{\rm i}}{\Delta t} = \frac{36.1 - 30.0}{2.5} = 2.44 \text{ m s}^{-2}$$

Interpretação: m/s

O valor da aceleração média é aproximadamente 2,44 m s⁻², o que significa que, **em cada segundo**, o carro aumentou a sua velocidade em cerca de **2,44 m s⁻¹**. Este aumento de velocidade, num curto intervalo de tempo, foi fundamental para o piloto conseguir **ganhar vantagem e ultrapassar o adversário** na reta final da corrida.

Exercício 2: O gráfico seguinte descreve, num referencial Ox, o movimento do centro de massa de um corpo que se move com movimento retilíneo.

Classifica a afirmação como verdadeira ou como falsa:

"A velocidade e a aceleração têm sentidos opostos no intervalo [15; 20] s.

Repara:

A partir do gráfico podemos verificar que a velocidade tem o sentido negativo desde os 0 s até aos 20 s, entre [20; 25]s o corpo está em repouso e após os 25 s a velocidade tem sentido positivo.

Se a componente escalar da velocidade é positiva, o corpo desloca-se no sentido positivo. Se for negativa, o corpo desloca-se no sentido negativo.

A aceleração tem sentido positivo quando $\Delta v > 0\,$ e o sentido negativo se $\Delta v < 0\,$

No intervalo entre 15 s e 20 s, a aceleração e a velocidade têm sentidos opostos.

$$a_{\rm m}(15,20s) = \frac{\Delta v}{\Delta t} = \frac{0.0 - (-6.0)}{20 - 15} = +1.2 \text{ m s}^{-2}$$

Resposta: verdadeira.

Etapa 2: Aplica

Resolve os exercícios propostos do manual.

Compara as tuas respostas com as soluções e com as respostas dos teus colegas.

Regista dúvidas e revê os conceitos, se necessário.

Estuda com um colega.

TAREFA 4: Autoavalia

Exercício: Classifica, para cada intervalo de tempo, o tipo de movimento a que se encontra sujeito um comboio de madeira, indicando se a aceleração tem valor positivo, negativo ou nulo. Considera a trajetória retilínea.

 $v/m s^{-1}$

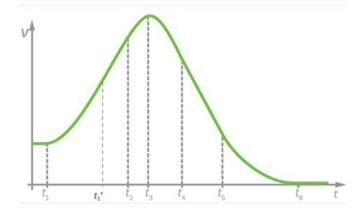


Figura 1 – Gráfico velocidade-tempo para o movimento de um comboio de madeira.

PROPOSTA DE RESOLUÇÃO

TAREFA 1:

 Para ultrapassar na última volta, António Félix da Costa teve de aumentar a sua velocidade num curto intervalo de tempo, ou seja, acelerar rapidamente. A aceleração, que é a variação da velocidade ao longo do tempo, foi essencial para conseguir ganhar vantagem.

PROPOSTA DE RESOLUÇÃO

TAREFA 2:

Aceleração média

Para quantificar a variação da velocidade de um corpo num certo intervalo de tempo define-se a grandeza **aceleração média** (símbolo \vec{a}_{m}).

É definida por:

$$\mathbf{m} \, \mathbf{s}^{-2} \vec{a}_{\mathrm{m}} = \frac{\Delta \vec{v}}{\Delta t} \mathbf{s}^{\mathrm{m}} \, \mathbf{s}^{-1} \quad \text{ou} \quad \vec{a}_{\mathrm{m}} = \frac{\vec{v}_{\mathrm{f}} - \vec{v}_{\mathrm{i}}}{t_{\mathrm{f}} - t_{\mathrm{i}}}$$

A aceleração média, \vec{a}_{m}

• É uma grandeza vetorial que se calcula dividindo a variação da velocidade, $\Delta \vec{v}$, pelo intervalo de tempo, Δt , correspondente.

 $\vec{v}_{\rm f}$ e $\vec{v}_{\rm i}$: velocidade final e inicial respetivamente, no intervalo de tempo Δt .

Tem a direção e o sentido do vetor $\Delta \vec{v}$ (pois Δt é um escalar positivo).

Num movimento retilíneo, sobre o eixo dos xx, a sua componente escalar é:

$$a_{\rm m} = \frac{\Delta v_{\rm x}}{\Delta t} = \frac{v_{\rm x_f} - v_{\rm x_i}}{\Delta t}$$

se $a_{\rm m} > 0$: $\vec{a}_{\rm m}$ aponta no sentido positivo do eixo;

se $a_{\rm m}$ < 0: $\vec{a}_{\rm m}$ aponta no sentido negativo do eixo.

Aceleração

Tal como se associa uma velocidade a um instante, também se define aceleração num instante (símbolo \vec{a}).

A aceleração está associada à variação instantânea da velocidade, ou seja, indica como a velocidade está a variar em cada instante.

A aceleração média aproxima-se da aceleração, quando o intervalo de tempo se torna muito pequeno.

A aceleração tem a mesma unidade da aceleração média.

Se a aceleração \vec{a} for constante, num dado intervalo de tempo, ela será igual à aceleração média, \vec{a}_m nesse intervalo de tempo.

PROPOSTA DE RESOLUÇÃO

Num movimento retilíneo só há aceleração, \vec{a} , se variar o módulo da velocidade, \vec{v} , pois a direção de \vec{v} não varia.

Num movimento curvilíneo há sempre aceleração, \vec{a} , mesmo que o módulo da velocidade, \vec{v} , não varie, pois a direção de \vec{v} varia em cada instante.

Movimento Retilíneo	Aceleração e velocidade em movimentos retilíneos	
Acelerado	$ec{a}$ e $ec{v}$ têm sempre a mesma direção e sentido.	
	Componentes escalares da velocidade e da aceleração: são ambas positivas ou ambas negativas.	
	Movimento sobre o eixo dos xx:	
	$\underline{v}_x > 0$ e $a_x > 0$ Movimento acelerado no sentido positivo	$y_x < 0$ e $a_x < 0$ Movimento acelerado no sentido negativo
	v x x x x x x x x x x x x x x x x x x x	\vec{v} $\vec{\lambda}$
Retardado	$ec{a}$ e $ec{v}$ têm sempre a mesma direção e sentidos opostos.	
	Componentes escalares da velocidade e da aceleração: se uma é positiva a outra é negativa.	
	Movimento sobre o eixo dos xx:	
	<u>v_x</u> > 0 e <u>a</u> _x < 0 Movimento retardado no sentido positivo	<u>v_x < 0 e a_x > 0</u> Movimento retardado no sentido negativo
	v x x d d d d d d d d d d d d d d d d d	v x x d x d x d x d x d x d x d x d x d

TAREFA 4: Autoavalia

Exercício:

- De 0 a t_1 : movimento retilíneo e uniforme a = 0 m s⁻²
- Em t_3 : a = 0 m s⁻²
- De t_1 a t_3 : movimento retilíneo acelerado a > 0 m s⁻² (entre t_1 ' a t_2 o movimento é uniformemente acelerado).
- De t_3 a t_6 : movimento retilíneo retardado a < 0 m s⁻² (entre t_4 a t_5 o movimento é uniformemente retardado).
- A partir t₆: repouso.

O QUE APRENDI?

Já sabes aplicar, na resolução de problemas, o conceito de aceleração?

És capaz de...

- relacionar a aceleração e a velocidade, num certo instante, nos movimentos retilíneos acelerados e retardados?
- interpretar gráficos velocidade-tempo de movimentos retilíneos reais, classificando os movimentos em uniformes, acelerados ou retardados?
- relacionar estes conceitos com aprendizagens anteriores?
- perceber quando precisas de ajuda e saber pedir orientação?

Sugestões:

Analisa as propostas de resolução dos exercícios. Se necessário, repete as tarefas.

Estuda com um ou mais colegas de turma, para reforçares as aprendizagens e, se possível, esclarece as tuas dúvidas.

Pratica, resolvendo os exercícios do teu manual escolar.

COMO POSSO COMPLEMENTAR A APRENDIZAGEM?

Assiste à videoaula <u>Gráficos de velocidade-tempo.</u> <u>Aceleração. Unidades de aceleração</u> e recorda o que aprendeste no 9.º ano.

Assiste à videoaula <u>Aceleração média, aceleração e</u> <u>gráficos velocidade-tempo</u> e resolve os exercícios propostos.

Explora o simulador:

Movimento - Posição | Velocidade | Aceleração

