

GTA | Guião de Trabalho Autónomo n.º 6 FÍSICA E QUÍMICA A 11.º ANO

Tema 1: Mecânica Subtema 2: Interações e seus efeitos

PORQUÊ APRENDER SOBRE...?

Interações e seus efeitos.

Já te perguntaste o que mantém os planetas em órbita ou por que razão não flutuamos no ar? Todos estes fenómenos são explicados através de forças, interações fundamentais que, embora invisíveis, moldam todo o Universo. Ao estudares as quatro interações fundamentais da Natureza, compreenderás como funcionam os fenómenos físicos desde o interior do átomo até à escala das galáxias. Conhecer o modo como estas interações fundamentais atuam é dar um passo importante para desvendar os mistérios mais profundos da Natureza.

O QUE VOU APRENDER?

- Associar o conceito de força a uma interação entre dois corpos e identificar as quatro interações fundamentais na Natureza, associando-as às ordens de grandeza dos respetivos alcances e intensidades relativas.
- Analisar a ação de forças, prevendo os seus efeitos sobre a velocidade em movimentos curvilíneos e retilíneos (acelerados e retardados), relacionando esses efeitos com a aceleração.
- Aplicar, na resolução de problemas, as Leis de Newton e a Lei da Gravitação Universal, enquadrando as descobertas científicas no contexto histórico e social, explicando as estratégias de resolução e os raciocínios demonstrativos que fundamentam uma conclusão.
- Determinar, experimentalmente, a aceleração da gravidade num movimento de queda livre, investigando se depende da massa dos corpos, avaliando procedimentos e comunicando os resultados.

COMO VOU APRENDER?

GTA 6: As quatro interações da Natureza

GTA 7: Interação gravítica e Lei da Gravitação Universal

GTA 8: Terceira Lei de Newton

GTA 9: Efeito das forças sobre a velocidade

GTA 10: Segunda Lei de Newton

GTA 11: Primeira Lei de Newton

GTA 12: Aceleração da gravidade

Tema 1: Mecânica

Subtema 2: Interações e seus efeitos

GTA 6: As quatro interações da Natureza

Objetivos:

 Associar o conceito de força a uma interação entre dois corpos e identificar as quatro interações fundamentais na Natureza, associando-as às ordens de grandeza dos respetivos alcances e intensidades relativas.

Recursos e materiais: manual de Física, caderno diário e internet.

TAREFA 1: Quatro forças fundamentais

Etapa 1

Há quatro interações fundamentais, uma delas é a força gravítica.

Assiste ao vídeo "Como pensar na gravidade - Jon Bergmann". **Coloca** as legendas em português.

Como pensar na gravidade - Jon Bergmann

O vídeo revela que a gravidade é uma força de atração entre dois corpos com massa. Mostra que, embora a Terra também se mova em direção a uma rocha que cai, esse movimento é impercetível devido à grande diferença de massas. Compara a gravidade ao comportamento de ímanes para facilitar a compreensão. Refere que a força depende da massa dos objetos e da distância entre eles. Termina ao afirmar que, apesar de sabermos descrever a gravidade, a sua causa continua a ser um mistério.

Reflete sobre a seguinte questão:

O vídeo compara a força gravítica ao comportamento de ímanes. De que forma esta analogia ajuda a compreender o conceito de força como interação entre dois corpos?

Etapa 2

Pesquisa informações no manual e recorda a grandeza força.

Elabora, no caderno, um pequeno resumo, de forma a caracterizares a grandeza força.

TAREFA 2: Mapa conceptual

As interações entre sistemas existentes no Universo podem ser:

- · gravítica;
- eletromagnética;
- · nuclear forte;
- nuclear fraca.

Pesquisa, no manual, informações sobre as quatro interações fundamentais na Natureza e **elabora** um mapa conceptual.

TAREFA 3: Aplica

Etapa 1: Analisa exercícios resolvidos:

Exercício 1: Classifica a afirmação como verdadeira ou como falsa:

"As forças gravíticas têm um alcance infinito."

Repara na tabela de intensidade relativa das quatro interações fundamentais da Natureza.

	Força fundamental	Alcance	Intensidade relativa
	Gravítica	Infinito	10 ⁻⁴⁰
	Eletromagnética	Infinito	10 ⁻²
	Nuclear forte	10 ⁻¹⁵ m	1
	Nuclear fraca	10 ⁻¹⁶ m	10 ⁻⁵

Atuam apenas à escala do núcleo atómico. Têm intensidade desprezável para distâncias superiores aos respetivos alcances.

A força gravítica é das quatro interações a mais fraca.

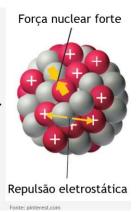
Apesar de ser pouco intensa, no caso de corpos com grande massa a força gravítica assume valores muito elevados.

Esta força é sempre atrativa e atua sobre todas as partículas do Universo, sem necessidade de contacto entre os corpos. O alcance da força gravítica é infinito.

Resposta: Verdadeira.

Exercício 2: Classifica a afirmação como verdadeira ou como falsa:

"A força nuclear forte é uma força de longo alcance, responsável pela coesão do núcleo com intensidade apreciável para regiões fora do núcleo."


Repara:

A força nuclear forte é uma interação de **curto** alcance, ou seja, só atua quando os protões e os neutrões estão muito próximos, dentro do núcleo atómico (a distâncias da ordem de 10⁻¹⁵ m).

Fora desse intervalo, a sua intensidade diminui drasticamente e torna-se **praticamente nula**.

Apesar de curta, esta força é muito intensa e consegue vencer a repulsão eletromagnética entre os protões, mantendo o núcleo coeso.

A <u>força nuclear forte</u> tem alcance muito curto: só atua nas partículas do núcleo, mantendo fortemente unidos protões e neutrões. É a interação com maior intensidade. O seu efeito sobrepõe-se largamente ao da repulsão elétrica entre protões, o que confere estabilidade ao núcleo.

Logo, a força nuclear forte é uma força de curto alcance. É extremamente intensa, mas o seu efeito é significativo apenas a distâncias muito curtas, da ordem do raio nuclear.

Resposta: Falsa.

Etapa 2: Aplica

Resolve os exercícios propostos no manual.

Compara as tuas respostas com as soluções e com as respostas dos teus colegas.

Regista dúvidas e revê os conceitos, se necessário.

Estuda com um colega.

TAREFA 4: Autoavalia

Exercício 1: Seleciona a opção que contém as interações fundamentais que apresentam alcance infinito.

- (A) Força nuclear forte e força eletromagnética
- (B) Força nuclear fraca e força gravítica
- (C) Força nuclear fraca e força nuclear forte
- (D) Força gravítica e força eletromagnética

Exercício 2: Identifica a interação fundamental associada:

- (A) ao movimento orbital dos planetas à volta do Sol.
- (B) à repulsão entre cargas elétricas.
- (C) à atração dos protões.
- (D) à transformação de um protão num neutrão.

PROPOSTA DE RESOLUÇÃO

TAREFA 1:

Etapa 1

O vídeo compara a força gravítica ao comportamento de ímanes. De que forma esta analogia ajuda a compreender o conceito de força como interação entre dois corpos?

A analogia ajuda a perceber que, tal como os ímanes se atraem mutuamente quando estão próximos, os corpos com massa também se atraem devido à gravidade. A força aumenta com a massa e diminui com a distância entre os corpos, tal como acontece com a força magnética.

Etapa 2

Força, \vec{F}

- Está associada a uma interação entre dois corpos, exercida por contacto ou a distância: a força exercida sobre um corpo é devida à ação de outro corpo.
- È uma grandeza vetorial em que:
 - a intensidade é o módulo do valor;
 - o ponto de aplicação é representado no centro de massa do corpo, se este for reduzido a uma partícula.
- · Mede-se com um dinamómetro.
- Exprime-se em newton (símbolo N) no SI.

PROPOSTA DE RESOLUÇÃO

TAREFA 2:

Exemplo de um mapa conceptual:

TAREFA 4: Exercício 1:

- A **força nuclear forte** é a de maior intensidade, atua ao nível do núcleo atómico sendo responsável pela sua coesão e apresenta um curto alcance.
- A **força nuclear fraca** atua também ao nível do núcleo é a que apresenta menor alcance.
- As interações gravitacionais e eletromagnéticas apresentam alcance infinito. A eletromagnética é responsável pelos fenómenos elétricos e magnéticos, sendo que as forças exercidas por contacto são de natureza eletromagnética. A interação gravitacional atua em todas as partículas.

Resposta: opção (D).

PROPOSTA DE RESOLUÇÃO

TAREFA 4:

Exercício 2:

Identifica a interação fundamental associada:

(A) ao movimento orbital dos planetas à volta do Sol. (Força Gravítica)

- · Atua sobre todas as partículas do Universo.
- É a mais fraca de todas as interações, mas é intensa quando a massa dos corpos celestes é grande (como a de planetas e estrelas).
- · Tem alcance infinito.
- É sempre atrativa.

(B) à repulsão entre cargas elétricas. (Força eletromagnética)

- · Atua sobre partículas carregadas.
- · Pode ser atrativa ou repulsiva.
- · Tem alcance infinito.
- É mais forte que a força gravítica.
- Manifesta-se à escala macroscópica e microscópica.
- Permite interpretar, por exemplo:
 - fenómenos elétricos e magnéticos mais comuns;
 - emissão e absorção de luz;
 - a levitação de certos comboios de alta velocidade: comboios Maglev;
 - o funcionamento de aceleradores de partículas como o CERN;
 - as ligações químicas (dentro das unidades estruturais e entre elas);
 - a formação de átomos (atração entre núcleos atómicos e eletrões).

(C) à atração dos protões. (Força nuclear forte)

- É a mais forte das quatro interações.
- Atua à escala do núcleo atómico, sendo responsável pelas fortes ligações protão-protão, neutrão-neutrão e protão-neutrão e, portanto, pela existência dos núcleos.

(D) à transformação de um protão num neutrão. (Força nuclear fraca)

- É a interação com menor alcance.
- Atua à escala dos constituintes do núcleo atómico, sendo mais fraca do que a força nuclear forte.
- Está na origem dos processos de radioatividade beta: um neutrão transforma-se num protão com emissão de um eletrão e de um antineutrino (ou um protão transforma-se num neutrão com emissão de um positrão e de um neutrino).

O QUE APRENDI?

Já sabes identificar as quatro interações fundamentais na Natureza?

És capaz de...

- associar o conceito de força a uma interação entre dois corpos?
- identificar as quatro interações fundamentais na Natureza, associando-as às ordens de grandeza dos respetivos alcances e intensidades relativas?
- elaborar um mapa conceptual?
- relacionar estes conceitos com aprendizagens anteriores?
- perceber quando precisas de ajuda e saber pedir orientação?

Sugestões:

Analisa as propostas de resolução dos exercícios. Se necessário, repete as tarefas.

Estuda com um ou mais colegas de turma, para reforçares as aprendizagens e, se possível, esclarece as tuas dúvidas.

Pratica, resolvendo os exercícios do teu manual escolar.

COMO POSSO COMPLEMENTAR A APRENDIZAGEM?

Assiste à videoaula <u>As quatro interações da Natureza:</u> gravítica, eletromagnética, nuclear forte e nuclear fraca resolve os exercícios propostos.

Assiste à videoaula <u>Força. Grandezas escalares e</u> vetoriais. <u>Unidades de força.</u> recorda o que aprendeste no 9.º ano.

Explora outro recurso:

The four fundamental forces of nature - Michio Kaku. Coloca as legendas em português.

Explora o simulador:

Forças e Movimento - Força | Posição | Velocidade

