





| BLOCO N.º 04             |      | Managaria A                                                                                                                                                                                                                                                     |
|--------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANO(S)                   | 12.° | Matemática A                                                                                                                                                                                                                                                    |
| APRENDIZAGENS ESSENCIAIS |      | <ul> <li>Conhecer e aplicar na resolução de problemas: combinações; arranjos e permutações.</li> <li>Resolver problemas que mobilizem os conhecimentos adquiridos ou fomentem novas aprendizagens, em contextos matemáticos e de outras disciplinas.</li> </ul> |

## Título/Tema do Bloco

Combinações. Resolução de problemas.

## Tarefas/ Atividades/ Desafios

#### 1. Sumos de fruta

A Isabel dispõe de sete tipos de fruta (laranja, ananás, maçã, manga, maracujá, morango e banana) Sec./12.º ano para fazer um sumo.



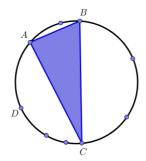
Quantos sumos diferentes pode fazer misturando, em quantidades iguais, três desses tipos de fruta?



# 2. Leitura para férias

O Rodrigo comprou oito livros na última Feira do Livro.

Sec./12.° ano




Pretende escolher cinco desses livros para ler durante as férias. De quantas maneiras diferentes pode fazer essa escolha?

### 3. Pontos na circunferência

Considera nove pontos distintos de uma circunferência.

Sec./12.° ano



Determina o número de triângulos que é possível construir tendo como vértices três dos nove pontos.

Dimensões 12, Santillana

#### 4. Pessoas

Com cinco pessoas, quantos conjuntos com pelo menos três pessoas, é possível formar?

Sec./12.º ano

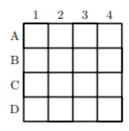


Freepik

(A) 81

(B) 60

(C) 16


(D) 10

Exame Nacional 12.º ano, 2018 - Época especial

## 5. Tabuleiro



Na figura está representado um tabuleiro quadrado dividido em 16 quadrados iguais, cujas linhas são Sec./12.º ano A, B, C e D e cujas colunas são 1, 2, 3 e 4.



O João tem 12 discos, 9 brancos e 3 pretos, só distinguíveis pela cor, que pretende colocar no tabuleiro, não mais do que um em cada quadrado.

De quantas maneiras diferentes pode o João colocar os doze discos nos dezasseis quadrados do tabuleiro?

- (A)  $^{16}C_{12}$  (B)  $^{16}C_9 \times {}^7C_3$  (C)  $^{16}A_{12}$  (D)  $^{16}A_9 \times {}^7A_3$

Exame Nacional 12.º ano, 2013-2.a fase

6. Quiz

Sec./12.° ano



6.1. Uma empresa tem 29 funcionários, 14 informáticos e 15 comerciais.

Pretende-se escolher 4 funcionários dessa empresa para participarem num evento solidário.

De quantas maneiras distintas se pode fazer a seleção?

- (A)  $^{29}A_4$  (B)  $^{29}C_4$  (C) 4! (D)  $^{15}C_4$

6.2. Uma empresa tem 29 funcionários, 14 informáticos e 15 comerciais.

Pretende-se escolher 3 informáticos e 2 comerciais para representarem a empresa numa feira da especialidade.

De quantas maneiras distintas se pode fazer a seleção?

- (A)  $^{29}A_5$  (B)  $^{29}C_5$  (C)  $^{14}A_3 \times ^{15}A_2$  (D)  $^{14}C_3 \times ^{15}C_2$

6.3. Uma empresa tem 29 funcionários, 14 informáticos e 15 comerciais.



Pretende-se escolher 3 informáticos para criar uma nova equipa: um para chefe de equipa, outro para uma posição sénior e outro para uma posição júnior.

De quantas maneiras distintas se pode fazer a seleção?

- (A)  $^{29}A_3$  (B)  $^{29}C_3$  (C)  $^{14}A_3$  (D)  $^{14}C_3$

6.4. Uma empresa tem 29 funcionários, 14 informáticos e 15 comerciais.

Os chefes de departamento, que são 3 informáticos e 2 comerciais, vão tirar uma fotografia para uma campanha publicitária, alinhando-se lado a lado.

De quantas maneiras diferentes se podem alinhar os 5 chefes de modo que os informáticos fiquem juntos e os comerciais também?

- (A) 5!

- (B)  $2! \times 2! \times 3!$  (C)  $2! \times 3!$  (D)  $^{14}A_3 \times ^{15}A_2 \times 2!$

6.5. Uma empresa tem 29 funcionários, 14 informáticos e 15 comerciais.

O José e a Ana são dois dos informáticos dessa empresa.

Quantas comissões com 4 informáticos e 2 comerciais é possível formar que integrem o José e a Ana?

(A) 
$$^{12}C_2 \times ^{15}C_2$$

(A) 
$$^{12}C_2 \times ^{15}C_2$$
 (B)  $^{14}C_4 \times ^{15}C_2$  (C)  $^{12}A_2 \times ^{15}A_2$  (D)  $^{14}A_4 \times ^{15}A_2$ 

(C) 
$$^{12}A_2 \times ^{15}A_2$$

(D) 
$$^{14}A_4 \times ^{15}A_2$$